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1. INTRODUCTION

In the period of about two decades since the activity-based approach to travel demand analysis was
proposed, extensive empirica results have been accumul ated, methodologies for collecting data needed
for activity-based andysis have been developed, mode s capturing various aspects of activity-travel
behavior have been formulated, and modd systems for demand forecasting are now being constructed.
The activity-based gpproach remained largely within the domain of academic research until recently,
when the limitations of the conventiond, trip-based demand forecasting toolsin the current planning
contexts were widely recognized." In fact the activity-based approach is the only approach that can
offer coherent frameworks for policy analysis and demand forecasting with the wide range of travel
demand management (TDM) and other policy measures that are being considered for improved mohility
and reduced environmenta impact.

Jones et. al. (1990) provide a comprehensive definition of activity andyssas itisa“framework in
which travel isandyzed as dally or multi-day patterns of behaviour, related to and derived from
differencesin life styles and activity participation among the population.” The “emerging festures’ of
activity andyss areidentified (Jones et. al., 1990) as:

» Treatment of travel as ademand derived from the desires, demand to participate in other, non-

! Kitamura (1988) attributed this inattention by the practitioners: community to the fact that the activity-based
gpproach is not suited for the evauation of capita-intensve, large-scale projects, but it is better suited for
refined, often small-scae trangportation policy measures. Unfortunately small-scale projects can rarely afford
elaborate analyss. Thisisno longer the case, at least in the United States where the importance of refined
trangportation control measuresiswell recognized and efforts are being made to promote their implementation
and to assesstheir potentia effectiveness.



travd activities,

»  Focus on sequences or patterns of behavior, not discrete trips;

* Andyss of households as the decison-making units,

* Examinaion of detailed timing and duration of activities and travel;

» Incorporation of spatid, tempord and inter-personal condraints,

* Recognition of interdependence of among events, and

» Useof household and person classification schemes based on differencesin activity needs,
commitments and condraints.

Many studies have been undertaken, placing different levels of emphasis on each of these points.
Reviews of activity-based studies accumulated thus far can be found in Damm (1983); Jones (1983);
Kitamura (1988); Jones et. al. (1990); Axhausen (1990); Axhausen and Garling (1992); Gérling et. al.
(1994); Jones (1995), and Kurani and Kitamura (1996).

The activity-based andyssis now entering the stage of producing practica tools for policy andysisand
demand forecasting. The tools that are being developed may look quite different from the conventiond,
trip-based tools of travel demand analyss. Trip-based modds typicaly determine the number of trips
firgt, and then determine the attributes of these trips to produce demand forecasts. This, however, is not
consstent with the way we behave. No one would think about how many trips to make when
developing a plan for aday; rather, one would think about what she wants to or needs to do, where the
activities can or need be engaged, and, only then, would think about how to vist these places.
Importantly, how many tripswill be made depends on how the vidts to different places are sequenced
and combined into trip chains. Trip-based approaches to travel demand forecasting thus rest on
dubious behaviora ground.

Activity-based demand forecasting, then, should be based on amode of activity engagement, and then
should forecast the number of trips and their attributes, given aset of activities to be pursued. Modding
activity engagement, however, isnot at dl atrivid task. Kurani and Kitamura (1996) note that

“the paradigm [of activity-based analysis] has yet to develop or adopt a comprehensive
theory of activity participation. ... Lacking such atheory ..., we are able to assess
neither the motivations for choosing to participate in a given activity nor the decisons as
to when and for how long to engage in achosen activity. Chapin (1978) applied a
smple theory based on Madow’ s “hierarchy of needs’ (Madow, 1970) in his
investigation of differences in activity patterns between different socio-economic groups
of people. Tonn (19833, 1983b) delineated a system of activity participation, but
acknowledged he had to draw on an eclectic blend of psychologica theories and
maxims, none of which could be regarded as widdly accepted. Bhat and Koppelman
(1993) have proposed a framework of activity program generation, but this framework
isnot adirect link between activities and needs.”

Presumably thisis where the chalenge in activity-based andysislies. For example, Gérling and Garvill
(1993) propose that investigation be made into how the activities performed are related to the



individud’ s gods.

This, however, is not to suggest that the activity-based approach isinept in providing useful planning
information. In fact, the conceptud framework of the activity-based andyss offers features that
facilitate coherent analysis of travel demand. While no widely accepted mode of activity engagement
has been in existence, “ utility-maximizing” discrete choice models of activity engagement and Satistical
models of activity durations have served as critical components of micro-anaytic modds of activity-
travel behavior. Asisreviewed briefly in this paper and is trested more rigoroudly in Axhausen and
Gérling (1992), Garling et. al. (1994) and Kurani and Kitamura (1996), research is progressing at
hedlthy rates in areas that support the congtruction of activity-based modd systems of travel demand
forecadting.

The forecasting modds reviewed in this paper can be classified into two groups:

» dructurd equations modd systems of measures of mobility and activity participation, and
e micro-amulation modd sysems of individuds activity engagement and travel.

The structurd equations modd systems capture relationships among individud-leve, macro-measures of
mohbility and activity participation (e.g., number of trips, total travel distance, tota travel time and time
alocated to each type of activity) and exogenous (explanatory) variables (which are typically person
and household attributes, network variables, and land use information). 1n the sense that they do not
explicitly modd the behaviord mechanisms underlying activity participation and travel behavior, but
merdly trace salient Satigtica relationships among indicators of activity-travel behavior and explanatory
variables, one may not consider them truly “activity-based.” Y et they have proved to be effective tools
in addressing arange of issues including that of induced travel demand.

The latter, micro-smulation approach includes modding efforts that attempt to replicate the decision
mechanisms underlying activity engagement and travel. Severd modd systems have so far been
proposed. They each have unique focuses, e.g., memory structure, search processes, activity
scheduling, adaptation, and time-gpace congraints. These modds are by definition microscopic and
require types of datathat have not been used in traditiona travel demand analysis (Axhausen, 1995,
consders data needs for modds of activity scheduling). Y e, prototypes exist that rely on information
that is mogily available from loca planning organizations.

Reviewed in this paper are samples of studies from these two groups, in which activity-based models
have been applied to demand forecasting and policy andyss. The objectives of thisreview areto
summarize the progress so far made in the gpplication of activity-based models to demand forecasting,
and to demondtrate the benefits this approach will offer when it isfully developed. In the next two
sections, the limitations of the conventiond trip-based models and the reasons why activity-based
models should be used, are discussed. In Section 4, requirements for activity-based demand
forecasting are discussed. Application examples of structura equations models and micro-sgmulaion
models of activity and travel are presented in Sections 5 and 6, respectively. Section 7 offers
conclusions.



2. ACRITICAL REVIEW OF THE TRIP-BASED, FOUR-STEP MODEL SOF TRAVEL
DEMAND

In the Detroit Metropolitan Area Traffic Study (DMATS) which started in 1953, Weiner (1992)
reports that “Much of the work was done by hand with the aid of tabulating machines for some of the
cdculations” Given the cost and speed of computation, and the software available for statistical
andysis and data- base management, it is not surprising that the travel demand modd systems devel oped
in the 50s and 60s involved:

» aggregation of data to make the data- base manageabl e and to reduce computationa
requirements

» gmple moddsthat do not require lengthy computation for the estimation of their parameters and
preparation of forecasts, and

e parsmonious modelsthat include only the most sdient variables.

When tabulating machines are the only computationd tools avallable, inverting a 5-by-5 matrix would
not be atrivid task. Consequently linear regresson modes could include only alimited number of
explanatory variables. Likewise, moda split moded s were zone-based and incorporate only a few, most
obvious explanatory variables.

It should nonethel ess be acknowledged that the smplifying assumptions adopted in the four-step
procedure facilitated quantitative analysis of urban passenger travel demand, usng home-interview
survey results, land use inventory data, network models, census and other existing data, and
computationa capabilities that were available decades ago. When reviewing transportation planning
models that are currently in use, however, one may notice that some are dill bounded by the limitations
in computer hardware and software that existed when the four- step procedure was being developed.

The development of the four- step procedure was motivated by the planning needs of the 50s and 60s
when the expansion of transportation infrastructure was of primary concern. Thisisthe period of the
“suburban boom,” whose four main foundations were: new road, zoning of land uses, government-
guaranteed mortgages, and a baby boom (Hall, 1988). With the rapid suburbanization, what was
needed was road networks that effectively connected the centra city as the place of employment and
suburbs as the place of residence. Commuite trips to and from work were of primary concern when
road networks were planned. Given these planning contexts, one would agree that the trip-based, four-
step mode system is a streamlined procedure which adequately served the planning needs of that time.
Indeed it represents skillful amplifications to develop apractica tool to meet the planning chalenges of
thetime.

The procedure, however, contains limitations, some of which were discussed extensvely when
disaggregate choice models were proposed in the 70s. Furthermore, significant changes took place
since the 50s and 60s in demographic and socio-economic characteristics of households (e.g., more
working women, smdl households and single- parents), urban forms (e.g., commercid developmentsin



suburbs), industrial compogtion, distribution systems (e.g., shopping malls), and consequently in travel
patterns. Planning emphases have shifted from infrastructure devel opment to trangportation systems
management (TSM) to TDM. And energy and environment have emerged as new concerns of
trangportation planning. The trip-based, four-step procedure that was tailored to the planning needs of
the 50s and 60s, just does not serve well in the current planning contexts.

The discussion in the rest of this section focuses on three mgjor sources of problemsthat are most
deleteriousin the current transportation planning contexts: (i) lack of behaviora bass, (i) lack of the
time dimension, and (jii) trip-based model structure?

Lack of Behavioral Basis: Attempting to represent demand by the seridly linked four model
components presents problems under certain conditions. Suppose parking pricing isimplemented in
adowntown area, prompting some travelers to choose suburban destinations. This changein trip
attraction, however, would not at al be accounted for by the four-step procedure because trip
attraction is determined in the trip generation phase, which is not senstive to parking cost.

Likewise, the impact of new highway segments on trip distribution would be under-estimated, while
mode shift could be over-estimated, because of the typicd insengtivity of trip generation/attraction
modds to accessihility. 1ssues of induced trips and suppressed demand are difficult to address
within the structure of the four-step procedure. These problems arise because the four-step
procedure does not represent the decision mechanisms underlying travel behavior. As noted earlier,
people do not decide how many trips to make before deciding what to do, where to go, and how to
get there.

Lack of Time Dimension: Thefact that the four-step procedure does not incorporate the
time-of-day dimenson is curious Since congestion — which has been the sngle most important
concern of trangportation planning — occurs with the concentration of demand in the same
geographica areawithin the same time period. The absence of the time dimension necessitates the
use of purdly empirical, often dubious, procedures to determine hourly demand volume. 1t makes it
difficult to thoroughly andyze peak spreading, assess impacts of congestion pricing, or predict the
distribution of cold and hot gtarts.

Trip-Based: The four-step procedure treats each trip as an independent entity for anadlysis. This
assumption, on which the structure of the four-step procedure hinges, leads to a number of serious
limitations which stem from the fact that trips made by an individud are linked to each other and the
decisons underlying the respective trips are dl inter-related. For example, consider ahome-based
trip chain (a series of linked trips that Starts and ends at the home base) that contains two or more
stops. The four-step procedure would examine each trip separately and determine the best mode
for it, leading to two mgor problems. Firdly the result may violate the moda continuity condition;
mode choice for atrip with non-home origin is conditioned on the mode selected for the first,
home-based trip. Secondly, the result ignores the behaviord fact that people plan ahead and

2 The discussons in the remainder of this section are drawn from Kitamura et. al. (1995a) and partialy
expanded.



choose attributes of each trip (including mode, destinations, and departure time) while consdering
the entire trip chain, not each individua trip separately.
One of the possible consequences of these limitations is an over-prediction of mode shift.® The problem
is compounded by the fact that the moda split phase of the four-step procedure, where disaggregate
choice models are often incorporated, tends to be most sensitive to changes in the network level of
sarvice. Asareault, the four-step procedure may grosdy over-estimate mode shift when in fact travel
mode may be the last thing travelers wish to change in response to TDM measures.

Also gems from these three limitations is the problem that the four-step procedure will not be able to
capture the full impact of a changein the travel environment. Suppose a drive-aone commuter routingy
stops by a a grocery store on the way home from work. Faced with congestion pricing, this commuter
may choose to take a bus to work, and go shopping by auto at a grocery store near the home base after
returning home by bus. The trip-based four-step procedure is not capable of addressing such
repercussions brought about by the commute mode change.

These examplesilludrate that the four-step procedure is hardly applicable to the andyss of TDM
measures. It isdso insengtive to the effects of mounting traffic congestion or trave time savings due to
traffic improvement. While some of the problems discussed in this section may be resolved by intro-
ducing new modd eements or modifying some of the components of the four-step procedure, the
problems ssemming from the atempord, trip-based sructure are difficult to eiminate. Consequently
developing effective toolsfor TDM andyssisimpracticd within the framework of the four-step
procedure.

3. WHY THE ACTIVITY-BASED APPROACH?

The activity-based approach provides a coherent framework for travel behavior analysis and demand
forecasting. While datistica associations, rather than behavioral relationships, drove model
development of the components of the four-step procedure, the activity-based approach starts with the
recognition that a rigorous understanding of travel demand will follow from an understanding of why and
how activities are engaged over a span of time. Another important distinction is the recognition that trips
cannot be analyzed one by one independently because the activities engaged over aperiod of time are
linked to each other, and consequently the trips made to pursue these activities are also inter-rel ated.

Because the activity-based andys's attempts to develop model systems based on arigorous
understanding of why people travel, resulting models are gpplicable to amuch wider range of Situaions
than isthe trip-based four-step procedure. As the examples presented later in this paper show, the
activity-based approach offers a better framework for the andysis of TDM measures. The issue of
induced or suppressed trips can aso be entertained with the gpproach. In fact mogt, if not al, of the
problems of the four-step procedure described in the previous section can be resolved by adopting the
activity-based approach.

% Keith Lawton brought this possibility to the author’ s attention.



There are severd factors that have made activity-based modes practica tools for travel demand
forecadting (Kitamura et. al., 1995a). They are: accumulation of activity-based research results;
advancesin survey methods (e.g., stated-preference (SP) and time-use survey methodologies) and
datistical estimation methods; and advances in computationa capabilities and supporting software
(database software, GIS, etc.). These factors together have created an environment where models of
travel behavior can be developed while adhering to the principles of the activity-based approach. In
particular, activity-based micro-smulation of travel behavior has become apractical tool for
trangportation planning and policy andyss.

The advantages of the activity-based approach are summarized in Kitamuraet. al. (1995a) as.

» daily behavior: treats adaily activity-travel pattern as awhole, thus avoids the shortcomings of
the conventiond trip-based methods;

» realism: incorporates various condraints governing trip making, facilitating redigtic prediction
and scenario andyses; and

* induced demand: by representing activity engagement behavior, the activity-based approach
can rigoroudy address the issue of induced or suppressed demand.

In addition, activity-based micro-smulaion of activity engagement and travd offers the following
advantages.

» time of day: predictstravel behavior dong a continuous time axis,

* TDM evaluation: is cagpable of redigtically assessng the impact of TDM measures on the entire
daly travel demand;

» flexible and versatile: can be modified for specific study objectives or to address various
policy scenarios, eg., to evauate effects of day-care facilities at work, extended trangit service
hours, or new trangit service;

 accuracy control: using synthetic household samples can produce results with desired levels
of gpatia and tempora resolutions; and

» comprehensive evaluation tool: activity-based gpproach smulates the entire daily activities
and travel. Therefore the effect of atrangportation policy on the entire daily activity, not just
commuite trips, can be evaluated, leading to better benefit measures.

The activity-based gpproach implies an expansion of the andytical scope because its subject is not
limited to the trip. This naturdly leads to increased levels of data requirements and andytical
complexities. The advantages offered by the approach, in particular the ability to overcome the
limitations of the conventiond trip-based methods and to address policy options that are important in
current planning contexts, more than outweigh the disadvantages. In fact practica forecasting models
are being devel oped as reported later in this paper.

* See Beckman et. al. (1995) and Kitamura (1996).



4. WHAT ACTIVITY-BASED TRAVEL DEMAND FORECASTING MUST SATISFY

When the reduction of peak-period congestion was the mgjor concern of urban transportation planning,
daly travel volume by network link was congdered as a sufficient measure for planning exercises. The
requirement that trangportation planning analysi's must incorporate emissons anays's, has dragtically
changed the prerequisites for travel demand forecasting models. In this section, new requirements for
travel demand forecasting modedsin generd are reviewed briefly. Following this, requirements for
activity-based models are discussed.

Weiner (1993) ligts as emissons modeling requirements the six items shown in Table 1. What is evident
from the table is that methodologies are cdled for by which:

» trip garting time and ending time can be determined in alogicaly coherent manner;

» dapsed time between successive two trips by the same vehicle can be estimated such that
whether the latter trip involves a cold start can be determined,;

» vehidetypeisexplicitly treated; and

» day-to-day variations and seasond variationsin travel demand are appropriately captured.

It would be clear that the most coherent and robust approach to address the first two issues would be
to incorporate the time-of-day dimension into the mode framework. Thisisbeing achieved in some
micro-smulaion models systems as reviewed later in this paper.

Although severd modes of household vehicle type choice and utilization have been developed in the
past (see Kitamura, 1992), none has been adopted by MPOs so far. More criticaly, these vehicle type
choice and utilization models forecast the totd annual VMT for each household vehicle, but do not
match vehicles and trips. In other words, these models do not determine how the vehiclesin a
household fleet are assigned to the trips made by the respective household members. Consequently, the
information available from them does not support the emissons andyss with the spatid dimengon. The
most coherent and robust gpproach to address this issue would be to explicitly mode the process of
vehicledlocation to trips. Thisis an areawhere little attention has been directed in the past.

Tablel
Emissions Modeling Requirements as
Identified in Weiner (1993)

- VMT by hour of the day by grid square
- Average speeds by hour by grid location
- Vehide mix by hour of the day by grid square
- Proportion of cold starts by hour of the day
- Seasond variation in VMT, vehicle mix, etc.
- Annud growthin VMT




Thereis an increasing recognition that predicting travel demand for a“typica” weekday does not
adequately support transportation planning decison making. When traffic congestion is not limited to
the traditiona peak periods of commute traffic, ignoring weekend days can no longer be logicaly
supported. Furthermore, by concentrating “ average” travel demand, the “typica” weekday approach
offers no information on the distribution of travel demand over ayear. Consequently the gpproach is
incgpable of supporting the prediction of the frequency of air qudity sandard violations. Much work is
needed in this areg, in terms of both data collection and model development.

Activity-based models, especidly the micro-smulation approach described later, meet many of these
requirements imposed on travel demand models by the current planning needs. In addition to these
requirements, there are severd “desirable’ features of activity-based forecasting modds. Useful models
of travel demand andlysis and forecasting have been developed that do not necessarily possessal of
these desirable features. Y et, developing logicaly coherent and robust modds of activity and trave that
are gpplicable to awide range of policy analyses, cdls for additiona requirements. Thefallowing list is
prepared with short-term forecagting in mind:

* Mechanisms of activity engagement: It isdesrablethat amode of activity-travel behavior
explicitly represent the mechanism of activity engagement, while considering the needs and desires
for activities and taking into account the availability of resources (e.g., time and vehicles). In
addition, it is criticaly important for travel demand forecasting that the decision to change activity
location be explicitly modded (eg., aseries of comparison shopping activities may be pursued at
severd different locations, generating a number of trips).

* Internal consistency: The mode should faithfully represent spatid and tempora continuity of
movement, time-space constraints (e.g., Hégerstrand' s prisms), continuity in travel mode and
various coupling and inditutiona congraints (Hégerstrand, 1970).

» Comprehensive activity itinerary: All activities, both in-home and out- of-home, should be
included within the scope of the model, and the subgtitution between in-home and out- of-home
activities should be considered.

» Activity scheduling: Forming anitinerary for aday (or alonger span of time) involves placing
the activities to be engaged in a sequence (sequencing activities) and planning the starting time for
each activity (timing activities). Previous studies (e.g., Kitamura, 1984) have reveded tendencies
in activity sequencing that more mandatory activities tend to be pursued first. It isaso expected that
preferences do exist with respect to the timing of activities. Tendencies and preferences about
activity sequencing and timing must be represented in amodd of activity-travel behavior.

* Inter-personal linkages: The household is aunit where tasks are assigned to, resources are
dlocated to, and activities are engaged jointly by its members. Task assgnment, resource alocation
and joint activity engagement should be properly represented since travel demand generated by a
household is determined by these inter-persond interactions.



« Temporal variations: It isrequired that variaionsin travel demand from day-to-day, between
weekdays and weekend, and across seasons be represented.  For the purposes of emissions
andyss, it isdesred that the annud didribution of link traffic volumes be estimated.

o Trip Attributes. Travel demand must be forecast in terms of link travel volume by mode by
time of day. Asindicaed in Table 1, emissons andysis using currently available emissons modds
requires that vehicle-miles traveled, average speed, fractions of hot and cold starts, and vehicle mix
be forecast by small geographica area (grid). If these macroscopic indicators of travel demand are
to be forecast by aggregating the attributes of individua trips, then vehicle type and hot/cold start
must be determined as trip attributes in addition to the traditionad measures of origin, destination,
darting time, ending time, and mode.

Additiond requirements exist for long-term forecasting models, including the representation of: changes
in demographic and socio-economic characterigtics of the region (including household members
employment status and household vehicle holdings) and the interaction between trangportation and land
use (including households residentid location choice).

Data collected by conventiona methods and maintained by MPOs support some of the model
development efforts that are called for by these requirements. It is, however, needed that data
requirements be identified and data collection methods be refined toward the development of fully
activity-based demand forecasting models.

5. STRUCTURAL-EQUATIONSAPPROACHESTO ACTIVITY-BASED DEMAND
FORECASTING

Structurd equations modeling approaches have been used to capture relationships among macroscopic
indicators of activity and travel, and to explore how these indicators are associated with variables thet
are conddered to “explain” behavior, e.g., household structure and vehicle ownership. Structurd
equations gpproaches facilitate the examination of dternative hypotheses about the “ causal” relationships
among behaviord indicators, while reducing computationd requirements substantialy, even when
limited- dependent variables are involved, by adopting the method of moments for the estimation of
mode coefficients (see Ballen, 1989). Examples can be found in RDC, Inc. (1993), Golob and
McNadly (1995) , Golab et. al. (1996), and Kitamura and Fujii (1996).

Golob et. al. (1996) presents probably the most elaborate model system in this group of sudies. The
endogenous variables of the modd system are: “work/school activity duration,” “work/school journey
time” “maintenance activity duration,” *“maintenance journey time” “discretionary activity duration,” and
“discretionary journey time.” Maintenance activities include “weekly grocery shopping, pick up and
drop off passengers, persona business and ‘other’ activities” and discretionary activitiesinclude “ other
types of shopping, eating out, and visit/socid/sport.” Sex, income, presence of children, maritd gatus,

® See Pas (1988).



occupation and home ownership are used as exogenous variables. In addition, the following set of
mode use indicators is developed and used as exogenous, segmentation variables in the modd:
“exclusvey car,” “car + waking or bicycling only,” “car + public trangport,” and “exclusvely mode(s)
other than car.” Mode coefficients are estimated by segment while constraining sdlected coefficients to
be common among subsets (or the entire set) of the segments. Thisis equivaent as incorporating
interaction terms that consist of combinations of an exogenous variable and one of the segmentation
variables. Based on the results of modd estimation, observations are made as to how the exogenous
variables are differently associated with the endogenous variables across the mode use groups. Golob
and McNally (1996) have further extended the andytical scope by including inter-persona interactions.

These gructura equations modes have offered ingghts into the relationship among activity engagement
(often expressed in terms of time dlocation) and travel. These modd systems, however, offer no
explicit treetment of the decison mechanisms underlying activity engagement. They represent a
trandation of aset of hypothesesinto a system of smultaneous equations that involve “causal” links,
such as “income affects expenditure,” that are expressed as linear equations of (latent) endogenous and
exogenous variables. This limits the richness of the behaviora theories that can be incorporated into the
modd system; relationships derived from theoreticd congderations must be smplified to the form, “A
affects B.” In addition, no structural equations models have been devel oped where constraints on
behavior (e.g., the tota time avalable islimited to 24 hours per day) are explicitly introduced.
Consequently care must be exercised when gpplying these modes in cases where extrapolation beyond
the relationships embedded in the estimation data s&t, isinvolved. Another limitation isthat structura
equations models can represent multinomia choices only approximately. In terms of travel demand
forecagting, the models devel oped so far adopt aggregate representation of travel demand (e.g., total
number of trips, travel time expenditure by trip purpose, or total VMT), and therefore do not support
the andyss of travel demand where the spatid and tempora dimensions become criticd, such astraffic
congestion, pollutant emissons, and evauation of congestion pricing.

Structura equations models neverthel ess condtitute a powerful gpproach to the andysis of travel
demand. In particular, it facilitate expeditious exploration of dternative behaviora hypotheses and
development of quantitative model systems of activity and travel that are cgpable of offering results that
cannot be produced with the conventional model system. This can be seen in the two application
examples presented below.®

5.1 Examplel: Evaluation of Induced Trips

® The discussions in the rest of Section 5 draw from Kitamura, Pas and Fujii (1996).



Thefirg exampleis based on a structurd equations model system of commuters time use and travel
after work.” The data used in the study were collected in 1994 as part of an evaluation study of the
impact of new Wangan (Bayshore) Line of the Hanshin Expressway system in the Osaka-Kobe
metropolitan area. The survey adopted self-administered mail-out, mail-back questionnaires, which
were digtributed to 4,714 households along the Wangan Line and several competing routes. Usable
responses were obtained from 1,257 individuals of at least 16 years old, in 594 households (response
rate of 12.6%). A one-day activity diary wasincluded in the survey insruments. The diary collected,
for each activity, information on: the activity type, beginning time, ending time, facility type, type of
accompanying person(s), spatid fixity, and tempord fixity. For each trip, information was collected on:
travel mode, departure time, arrival time and number of accompanying persons.

The structurad equation model system of mobility and time use included as its endogenous variables:

* number of trips after work and before returning home for the firgt time,

» totd out-of-home activity duration (excluding travel) after work and before returning home for
thefirg time,

* increasein trave time due to trips made to engage in out- of-home activities after work and
before returning home for the first time,

» frequency of home-based trip chains after returning home for the firgt timetill retiring for the day,
and

» totd time spent at home after returning home for the firgt timetill retiring for the day.

The exogenous variables include: commute duration, regular work starting time, regular work ending
time, flexible work hours, number of hours overworked, age, work trip mode, number of restaurantsin
work zone, preference indicator for out-of-home activities, and preference indicator for in-home
activities.

The estimated model system was used to estimate the impacts of a 10-min. reduction in commute time
ontimeuseand trave. The results are summarized in Table 2. The mode system indicates that the 10-
min. travel time saving will lead to an increase in the average tota out-of-home activity duration by 1.88
min. and an increase in the total time spent in home by 7.11 min. The average tota travel time increases
by 0.36 min. Over 70% of the time saved is gpplied to additiona in-home activities, and about 19% to
out-of-home activities. The results here indicate that ardatively smal number of trips are induced by
travel time savings of the magnitude andyzed here, and that much of the travel time saved is spent at
home.

Table?2
Effects of Commute Time Reduction on Time Use and Travd
10-min.
Base Case Reduction Difference

’ For time use andlysis in trangportation planning in generdl, see Pas and Harvey (1991). Examples of empirical
gudies can be found in Kitamuraet. al. (1992, 1995b).



Total out-of-home activity duration 25.56 27.44 +1.88

Increase in travel time 6.78 7.14 +0.36
Frequency of home-based trip chains 0.03 0.04 +0.01
Total time spent at home 216.1 223.2 +7.11

5.2 Examplell: Time Use Utility

In another modding effort an attempt is made to formulate the utility of daily activities. The utility of an
activity is assumed to be the function of the time dlocated to it and the attributes of the individud. The
codfficients of the utility function are specified as linear functions of subjective preference ratings given

by the respondent for respective types of activity.

The resulting model system is goplied in this example to evauate dternative improvement strategies by
edimating how travel time reductions they produce may affect the daily utility. Consider asmple
network which encompasses the home base, the work base and an activity center. In the base case, the
travel time between home and work is 1 hr., that between work and the activity center is 30 min., and
that between the activity center and homeis 1 hr. Consider the following two improvement strategies:

Strategy 1: reduce the travel time between work and activity center by 15 min.
Strategy 2: reduce the travel time between work and home by 7.5 min., one way

Suppose work ends at 6:00 PM, and the commuter may choose to make a stop for discretionary
activity on the way home at the activity center. Theimpacts of the two drategies on the activity and
travel of ahypothetica person are estimated for the activity and travel of the commuter after work, and
are summarized in Table 3 for the case where no stop is made and the case where a stop is made.
Along with the amount of time alocated to out-of-home discretionary activities, travel time, and in-home
activity time, the table shows the probakility that an out- of-home discretionary activity will be pursued
on the way home, and the expected utility associated with the activity pattern.

Table3
Effects of Trave Time Reduction on Activity Engagement and Time- Use Utility

Base Case Strategy 1 Strategy 2

No No No

Stop Stop Stop Stop Stop Stop
Discretionary out-of-home time (hr.) 0.000 0.902 0.000 0975 0.000 0.902
Travel time (hr.) 1.000 1.500 1.000 1250 0.875 1.500
In-home time (hr.) 5000 3597 5.000 3775 5125 3597
Time returned home 19:00 20:24 19:00 20:14 18:53 20:24
Probability of choice 0538 0462 0497 0503 0562 0438
Expected time use utility 0290 0138 0290 0303 0389 0.138

In the case a stop is made on the way home, the 15-min. travel time reduction between work and



activity center under Strategy 1 results in an increase in out- of-home activity time by 0.073 hr. (4.3
min.), which is about 30% of the travel time saving. The remaining 10.7 min. is assgned to in-home
activities. The utility associated with the pattern with a stop increases from 0.138 to 0.303, with the
choice probahility increasing from 0.462 to 0.503. Likewise, it can be seen that the utility of the pattern
without a stop increases from 0.290 to 0.389 under Strategy 2 where the travel time between work and
home isreduced by 7.5 min. The conventiona unconditional expected representative utility (denoted as
“E[V]") and the expected representative utility of a paitern given that the pattern is chosen (“InSe””),
are shown below for these three cases®

E[V] InSe
Base case 0.220 0.910
Strategy 1 (improvement between work and activity center) 0.297 0.990
Strategy 2 (improvement between work and home) 0.279 0.964

It can be seen that Strategy 1, which involves the improvement of travel time between work and activity
center, produces alarger expected utility than Strategy 2. Consstent with this, the representative utility
of achosen pattern reved s that Strategy 1 in fact would offer more benefit.

The andyss of thisexampleislimited in the sense that only two Smple dternative activity-travel patterns
are consdered for just one person. The results have nonethel ess shown that the model system can be
used to evduate trangportation planning options while consdering changesin utilities associated with
activity-travel patterns.

6. MICRO-SSMULATION APPROACH TO ACTIVITY-BASED DEMAND
FORECASTING

The second approach is the micro-simulation of activity engagement and trip making. Severd mode
systems that have been devel oped attempt to represent the cognitive processes that accompany activity
scheduling and trip planning. These developments reflect advances made in models of human cognition,
decison making and problem solving. For reviews of developmentsin activity scheduling, see
Axhausen and Gérling (1992) and Gérling et. al. (1994).

8 The discussion here is based on the assumption of the logit model of discrete choice that the perceived tility of
an aternative, say j, can be expressed as U; = V; + g, where V; isthe “representative utility” and  isan error
term with an extreme-vaue distribution. Because the utility measures that can be identified from the andlyss here
are relative measures, E[V] and InSe” are not comparable to each other.



Preceding the current efforts to develop modds of activity scheduling is CARLA (Joneset. al., 1983),
whichisamodd system thet identifies feasible dternative schedules from dl possible schedules by
applying systems of constraints. STARCHILD (Root & Recker, 1983; Recker et. al., 1986a, b) isa
model system where activity-travel behavior is conceptudized as the choice of a particular schedule
from dl possible schedules based on utility measures. Following these predecessors are computational
process models that describe how people formulate and execute schedules. As the name indicates, the
computationa process approach focuses on the process of decision making and captures heuristics and
short-cuts that are involved, as opposed to assuming overriding behavioral paradigms such as utility
maximization. One example of computationd process modesis the production model (Newel &
Simon, 1972), which isamode of human problem solving comprising a set of rules, or condition-action
pairs that specify an action to be executed when a condition is encountered. Several computational
process models of activity scheduling have so far been developed, including: SCHEDULER (Gérling et.
al., 1989, 1994), SMASH (Ettemaet. al., 1993, 1994), DynaMIT (Tasker and Axhausen, 1994), and
the framework presented in Vause (1995). These model systems are reviewed in detall in Kurani and
Kitamura (1996). Thediscussonsin the rest of this section are concerned with AMOS (Kitamura et.
al., 1993, 19953, 1996; Pendyalaet. al., 1995), and PCATS (Kitamura, Fujii & Otsuka, 1996;
Kitamura and Fujii, 1996), which have been applied to produce forecasts.”

6.1 PCATS

PCATS smulaesthe individud’s activity engagement and travel within Hagerstrand' s prisms. In
defining prismsfor each individud, it is assumed that the smulation period, say a day, can be divided
into periods of two type: open periods and blocked periods. Open periods are onesin which the
individua has the option of traveling and engaging in activities. Blocked periods, on the other hand, are
ones where the individua has committed to engage in certain activities at certain locations. Activities
participated within ablocked period shdl be called fixed activities; those pursued in an open period
shall be called flexible activities.® Giventhe speed of travel, the ending time and location of a blocked
period and the beginning time and location of the subsequent blocked period, define atime-space prism
in which the individud’ s activity and travel are contained. It is assumed that the individua makes activity
engagement and travel decisions at the beginning of each open period and aso when an activity is
completed within a open period. It isthus assumed that activity engagement decision is made
sequentialy, conditioned upon past activity engagement.

® The discussionsin the rest of Section 6 are excerpts from Kitamura and Fujii (1996).

19 The activity categories used in PCATS are: deep, persona care (other than taking bath), persond care
(bath), child care, meal, domestic chore, work and work-related, school and study, socid, grocery shopping,
comparison shopping, hobbies and entertainment, sports and exercises, TV viewing, reading, resting, medica
and dental, and others. A set of assumptions are adopted to determine whether an activity isfixed or flexible.
Seepisaways classfied as afixed activity. Persona care (other than taking bath), persond care (bath), TV
viewing, reading, and resting, on the other hand, are dways classfied asflexible. Activities of the remaining
types are classified as fixed if the respondent indicated in the survey that the activity was subject to both
tempora and spatia condraints; otherwise they are regarded to be flexible.



6.1.1 Outline of PCATS

PCATS s based on a sequentia decomposition of the probability associated with an activity-travel
pattern, namely,

PI[A, B, C, ..] = P{A]PI[BIA]P{CIA, B] ....

where A, B, C, ... refer to events brought about by activity-travel decisons, eg., leave for work a 6:30
A.M. by car. Usng this sequential decomposition rule, the multiple decisons underlying an activity-
travel pattern can be expressed by a product of probablistic elements, each associated with an activity
episode or trip. Furthermore, each of these probablistic element can be further decomposed into
conditiona probabilities associated with respective aspects of activity-travel decison, eg., activity type,
activity duration, location, and travel mode (if relevant). Now, there are dternative sequences of
decomposition that are equivadent, e.g.,

PI[A, B, C] = Pr[A]PI[BJA]PI[CIA, B] = P[B]P[CIB]PI[A[B, C] = ...

Then a particular sequence may be preferred and selected considering: theoretical support, policy
sengitivity, and ease of modeling. The sequence adopted in the development of PCATS can be
depicted as: activity type ® location ® travel mode® activity duration.

Activity Duration Models are first discussed because they are used in the activity type choice model
presented next.™ The digtribution of durations of flexible activities is determined by activity type,
assuming that the parameters of the distribution (the mean and a shape parameter) is afunction of
persond attributes and other explanatory variables. Weibull diributions are exdusvely used in the
current version of PCATS.*? The explanatory variables used in the duration models are: person and
household attributes, past activity engagement, time of day, time availability and location type indicator.
The location types used here are { home, non-home} . For detailed descriptions of mode estimation
results, see can be found in Otsuka (1996).

The Activity Type Choice Model developed here has atwo-tier structure, and isformulated asa
nested-logit modd. Inthefirst (upper) tier, one of the following three broad classes of activitiesis
chosen: in-home activity, activity & (or near) the location of the next fixed activity, and generd out-of-
home activity. Exactly which dternatives can be included in the choice sat is determined consdering
prism congraints. In other words, the formation of choice setsin PCATS smulation is governed in part

" For earlier studies on the subject, see Mannering (1993), Niemeier and Morita (1996), Bhat (19963,
1996b), Ettemaet. al. (1995) and Kitamura, van der Hoorn & van Wijk (1995).

12 Thisis not to exclude the possibility that in the future more suitable distribution functions may be identified and
used in PCATS.



by prism congraints. The second tier under “in-home activity” includes engage in out-of- home activity
subsequently, and do not engage in out-of-home activity within the current open period. If the former is
the case, then the duration of the in-home activity will be determined, and the activity choice modd will
be applied again with the “in-home activity” dternative excluded from the choice set. If the latter isthe
case, then the travel to the location of the next fixed activity will be smulated. Likewisg, if the option of
“activity at (or near) the location of the next fixed activity” is seected in the firdt tier, then the trave to
the next fixed location will be Smulated.

If “generd out-of-home activity” is chosen, then the activity typeis sdlected in the second tier. Activities
are classfied into the following six activity types, which comprise the choice set in the second tier: medl,
socid, grocery shopping, comparison shopping, hobbies and entertainment, and sports and exercises.
The explanatory variables used to mode the choice of out-of-home activity type include: persond
attributes: age, sex, home-maker or not, time of day, and probakility that the activity duration fits within

the open period.

The Destination and Mode Choice Model isformulated also as a nested-logit model. Thefird tier
concerns the choice of destination, and the second tier the conditiona choice of travel mode, given the
degtination. In the current version of PCATS, one mode is gpplied to dl trips; thisisredrictive and in
the future mode s will be differentiated by trip purpose. Municipdities are used as the unit of
geographica aggregation in thisstudy. Travel modes are cdlassified as { public trangt, automobile,
bicycle, walk} . The explanatory variables used to account for destination choice are: zond population,
the number of commercia establishments, intra- zone destination dummy, the possible minimum travel
time to the destination zone then to the location of the next fixed activity, and the probability thet the
provisond activity duration fits within the open period given the activity is pursued a the destination
zone. The explanatory variables for conditionad mode choice, given adestination are: age, seX,
employment satus, driver’s license holding, household income, number of vehicles available, time of
day, travel time and cost by mode, and number of transfers, intra-zone trip dummy, and location type
indicator (indicators of the combination of the current location type and the location of the next fixed
activity).

Thismodd isused in PCATS to generate a destination and mode for each trip. Asis the case for
activity choice, only those degtinationr mode pairs that are feasblein light of prism congtraints and
coupling congraints (primarily for auto availability), are included in the choice .

The duration of the activity isfinaly determined, given itstype, location, and the mode used to reach the
activity location. The activity duration models described earlier are used here while consdering prism
condraints. The maximum possible activity duration isfirst determined based on the size of the prism,
which isafunction of the speed of traved, the location of thetrip origin, the location of the activity, and
the location of the next fixed activity. Then the digtribution as given by the duration mode for the
activity typeistruncated a the maximum, i.e,, a probability mass equaing to the probability thet the
activity duration will exceed that maximum is placed a the maximum. The resulting mix didribution is
used to generde activity durationsin the amulation.



6.1.2 Validation

A vdidation anadydsis conducted to determine how well the smulation system replicates observed
activity and travel patterns. In the analys's, expected va ues obtained from the smulation are compared
againg observed vaues for severd indicators of activity-travel patterns. Expected values are obtained
by averaging the results of 100 smulation runs performed for each sampleindividuad. The results of the
vdidation sudy are summarized in Table 4 for 374 sample individuas whose activity records are
complete,

Table4
Reaults of the Vdidation Study

Predicted Observed | |

Mean SD. | Mean SD. t R?
Totd trave time 116.3 70.7| 1279 87.1| -200| 0.622
In-home flexible activity duration 3145 1529 | 288.7 191.0| 204 | 0.673
Out-of-home flexible activity duration 284 723| 396 756 -2.07 | 0.329
Number of non-work degtinations 0071 061 031 058| -542| 0.169
Number of non-work trip chains 0059 028 0.013 011| 2.86|-0.027
Number of trips 289 156| 338 1.79]| -400| 0.576
SD.: dandard deviation across sample individuas
t: t- stati stics associated with the difference between the predicted and observed vaues

(not based on the standard deviations associated with “ predicted” vaues)
R Pearson correlation coefficient between predicted and observed vaues

It can be seen from Table 4 that tota trave time, in-home flexible activity duration, and number of trips
arerdatively wdl represented by the smulation. According to the t-Statistics, however, predicted
vaues and observed vaues are sgnificantly different for dl indicators (et a= 0.05). In particular,
number of non-work destinations and number of non-work trip chains have very smdl corrdation
coefficients. The results point to possible deficienciesin the mode components, especialy the activity
type choice modds. Theresults, nevertheless, demonsrate that the smulation system can replicate the
observation reasonably well, at least with respect to tota travel time, in-home flexible activity duration,
and number of trips.

6.1.3 Scenario Analysis
PCATS isnow applied to assess how changesin the travel environment affect an individud’ s activity
andtravd. Inthisandyssasampleindividud is sdected and his activity and travel after work is

smulated for each of the scenarios shown in Table 5.

Tableb



Scenarios Usd in the Smulation Andyss

Scenario Description

Basecase | Work endsat 5:00 PM. A car isused to commute.
Scenario 1 | Work ends at 6:00 PM. A car is used to commute.
Scenario 2 | Work ends a 5:00 PM. Public trangt is used to commute.
Scenario 3 | Work ends at 5:00 PM. Car commute takes extra 30 min.

The sample individud’ s profiles are as follows:

An employed male of 54 years old;

household income in the 1,500,000 to 2,000,000 yen range

has held a driver’'s license for 30 years;

one vehicle available to the household;

commutes to CBD Osaka;

lives approximately 30 km to the south from Osaka along the Osaka Bay; and
has good freeway access to the Osaka CBD.

The individud is assumed to be at the work location when work ends (which is assumed to be the
ending point of ablocked period), and the next blocked period is assumed to begin at midnight. Itis
thus assumed that the entire evening period, after work till midnight, is an uncommitted block of time.
Table 6 summarizes the results obtained by performing 100 smulation runs.

The frequency of the smple W-H pattern increases from 84 in the base case to 91, 89 and 90,
respectively, in the three scenarios. Quite notable in Scenario 1, where work ending time is moved to
6:00 PM, isthe substantial reduction in the out- of-home activity duration and the dight reduction in the
travel time associated with the W-O-H pattern. The in-home activity time does not show very much
change. The shortening of the after-work open period caused by the change in work ending time has
prompted the individua to engage in out- of-home activities less frequently. When the W-O-H patternis
engaged, the activity location is closer and the activity duration is much shorter, presumably to
accommodate the tighter time congraints. These tendencies are not found for the W-H-O-H pattern,
however. Y, it is cautioned that the frequency of out-of-home activity engagement issmal in the
smulation results and the gtatistics presented under the W-O-H and W-H-O-H patterns contain large
vaiations.

Similar reductions in out- of-home activity engagement can be found for Scenarios 2 and 3. The mean
travel times associated with pattern W-O-H exhibit increases of less than 15 min. from the base case,
while the activity times decrease by 15 to 20 min. Much larger changes are associated with the W-H-
O-H pattern. This, however, isat least in part due to the smdl sample size.

This scenario analys's has demondrated that PCATS facilitates the analysis of time-oriented policies
such as changes in work schedules while explicitly congdering time-space condraints in the analysis.
PCATS dso represents the repercussions of achange in the travel environment, including induced (or



suppressed) travel and changes in activity location and duration.

Table6
Results of Scenario Smulation with a Sample Individud
After-work Travel Pattern
W-H? W-O-H W-H-O-H  Other

Basecase Frequency 84 8 7 1
Trave time? 51 122 160
In-home time? 369 188 208
Out-of-home time? 0 109 52

Scenariol  Frequency 91 5 4 0
Trave time 51 114 184
In-hometime 309 177 115
Out-of-hometime 0 69 62

Scenario 2  Frequency 89 6 5 0
Trave time 79 135 180
In-hometime 341 190 155
Out-of-hometime 0 94 85

Scenario 3 Frequency 96 6 2 2
Trave time 81 136 214
In-hometime 339 195 178
Out-of-hometime 0 89 29

' W-H: work ® home. W-O-H: work ® other ® home. W-H-O-H: work ® home® other ®

home

In minutes. Out-of-home time excludestravel time.

Since static travel timeis used in the simulation, there is no random element in travel time (and
therefore in in-home time) for the first travel pattern, “W-H,” where the individual returns
home immediately after work and engages in no out-of-home activity.

Yet, PCATSIisdill inits early stage of development; it would be more appropriate to say the model
system as presented in this study is an initia prototype. For example, the destinationr mode choice
mode is not differentiated by trip purpose as noted earlier. The modd system does not yet have the
capability to endogenoudy generate fixed activities. There are many areas where devel opmert,
extension and refinement are needed. Neverthedessit can be concluded that the study has demonstrated
that activity-travel behavior in time-space prisms can be smulated reasonably well and that travelers
responses to changesin travel time or work schedules can be examined using the micro-smulation
modd system. The PCATS modd system is readily agpplicable to other types of scenarios, such as
changes in store hours or extended operating hours of public trangt, which are difficult to address with
the conventiond trip-based models that do not incorporate the time dimension and disregard time- space
condraints. An additiond future task is to incorporate into PCATS the behaviora mechanism for
activity engagement. The “utility-maximizing,” nested-logit modd of activity type choice incorporated in



PCATS captures the sdient tendencies associated with activity type choice; it, however, hardly captures
the reason for activity engagement. Effort is ongoing toward the development of amodd of activity
engagement which represents the motivations for activity engagement and which will make PCATS truly
behaviord.

6.2 AMOS

Activity-Mobility Smulator (AMOS) isamicro-smulation modd system of individuds adaptation
behavior which predicts changesin travel behavior that will follow a change in the travel environment.
The individua’ s adaptation behavior is characterized as atrid-and-error experimentation process. The
development of AMOS has been motivated by the recognition that the traditiona, trip-based, four-step
procedures are incapable of incorporating TDM and other policy measures thet are now the primary
focus of urban trangportation planning.

A prototype of AMOS has been developed and implemented in the Washington, D.C., metropolitan for
the evauation of sdlected TDM measures. AMOS s currently being implemented in three mgor
metropolitan areas of Cdifornia. In thisimplementation, AMOS is being combined with: a household
vehicle transactions modd which predicts the timing and type (addition, replacement, or disposal) of
vehicle transactions and the types of acquired vehicles, and a demographic smulator which predicts the
evolution of demographic and socio-economic attributes of households. AMOS will thus serve asa
long-term forecasting modd . Detailed discussions of AMOS can be found in RDC (1995), Kitamura
et. al. (1993, 1995a) and Pendyadaet. al. (1995). The description of the AMOS components below
draws from Kitamuraet. al. (1995a).

6.2.1 AMOS Components

AMOS comprises five main components and a reporting routine. In anutshell, it functions as follows.
First, how an individua may respond to a change in the travel environment caused by, say, a TDM
measure, is determined by Monte Carlo smulation with aneurd network that has been calibrated using
results of a stated-response survey designed and administered for AMOS cdlibration. Theindividud’s
“base-ling’ trave pattern is then modified based on the response, and dl necessary secondary and
tertiary changes are made while consdering a rule-base that represents a series of constraints and
tendencies, including Hégerstrand' s coupling congraints. Then the resulting modified pattern is evaluated
againg those patterns that have so far been generated, and is accepted when a set of rulesis met.
AMOS thus replicates an individua’ s trid-and-error search behavior for a better travel pattern based
on the paradigm of satisficing. The sructure and functioning of the modd system isillustrated below by
briefly describing each model component.

Baseline Activity-Travel Pattern Analyzer ingpects “base-ling’ travel diary data and determines
whether the diary data under consideration are complete, with al trips and pertinent information intact.
It dso checks whether the sample individua and/or her travel pattern fdlsin the categories targeted for



andyds. Another mgor function it performsis to develop indicators of travel pattern characteristics
(e.g., thereisastop during the commute trip) that feed into the Response Option Generator described
next.

Response Option Generator isakey stochastic eement of AMOS that produces response patterns to
achangein the trave environment. The input to the Generator consists of: household and person
attributes, network and land use characteritics, characterigtics of the change in the travel environment
(e.g., TDM attributes), and the indicators of the basdline activity-travel pattern characteristics prepared
by the Andlyzer. Given these, the Generator Smulates how the sample individua response to the TDM
messure.

The central component of the Generator is aneurd network. Its use draws from a branch of cognitive
science cdled “connectionism,” in which it is postulated that humans process information by breeking it
down into smdler dements that are inter- connected with different levels of intengty. In other words,
human thinking is a process of connecting one informationd ement (e.g., a concept) to another. This
idea can be depicted by a neurd network, which can be “trained” to best replicate observed connection
patterns between input (in this case TDM attributes) and output (response options).

Activity-Travel Pattern Modifier examines the basdine pattern and, if the regponse option from the
Generator necessitates it, performs: (i) activity re-sequencing (re-arrangement of the order in which
out-of-home stops are made), (i) activity re-linking (re-combining of out- of-home stops into trip
chaing), (iii) mode and destination assignment, and (iv) trip timing adjustment. Such adjustments are
needed primarily when atravel mode change or a departure time change implied by the response
option, makes the basdine pattern infeasible or impractica. The Modifier then examines the feasibility
of the resulting modified activity-travel pattern using arule base.

Evaluation Routine assgns a utility mesasure to the modified activity-travel pattern using time-use utility
functions (see RDC, 1993; Kitamura et. al., 1995b). The attractiveness of the pattern produced by the
Modifier ismeasured in terms of the utility generated by dlocating time to, and engaging in, the in-home
and out-of-home activities contained in the pattern. The utility functions have been developed using the
time- use data obtained from the time-use survey conducted as part of the implementation study. The
ongoing effort includes the generdization of the utility functions to include non-time elements such as
mode attributes, monetary expenses, and timing of activities. Usng the time utility concept, AMOS
evauates TDM measures while congdering their impacts on the entire daily activity, not just on the
commuite trips which these measures often target.

Acceptance Routine compares the activity-travel patterns so far generated, and determines whether the
search should continue or one of the patterns so far generated should be adopted. The routine
represents the assumption that, based on the outcomes so far, the individua forms a subjective
digribution of utilities associated with aternative patterns; assesses the likelihood of obtaining a better
activity-travel pattern; and terminates the search when the cost of search exceeds the expected gain of
searching further. Experiments are being designed to validate this theoretical search termination mode
and to estimate the parameters.



The output of the AMOS micro-smulation is modified and accepted travel patterns that represent
individuas responsesto TDM measures.

6.2.3 AMOS Survey

A prototype of AMOS has been developed and implemented in the Washington, DC, metropolitan
aea. The implementation effort adopts the Metropolitan Washington Council of Governments
(MWCOQG,) traffic andysis zone (TAZ) system and zone-to- zone network travel time matrices by travel
mode. Network skim data are available for: drive done (SOV), ride-sharing (HOV), public trangt with
walk access, and public trangt with auto access. Travel times by bicycle and walk are estimated by
applying assumed speeds (6.5 mph and 2.5 mph, respectively) to the centroid-to-centroid distance.
Theimplemertation effort thus utilizes as much spatia and moda information as available from the
MWCOG data base.™®

A three-phase survey, involving computer-aided telephone interviews (CATI), was conducted in
November and December of 1994 to generate a data set to calibrate AMOS componerts. The survey
included a time-use section which collected data on both in-home and out- of-home activities aswdl as
details of each trip made. Alsointhe survey wasaset of customized stated-response (or “ stated
adaptation”) questions which asked respondents how they would respond to each TDM measure.
Adult commuters who commuted at |east three days a week were the target of the survey. For further
information, see RDC (1995) and Pendydaet. al. (1995).

In the survey, respondents were given a description of a TDM measure, then asked in an openended
format, “What would you do?’ if the measure had been in fact implemented. Commute travel time and
other pertinent parameters were customized such that the hypothetica scenario would closaly represent
each respondent’ s commute Situation.  Follow-on questions were asked to probe into details of the
stated behaviora adjustment (e.g., how to drop off a child at the day-care when public trangit is used to
commute). The TDM measures included in the survey are described in Table 7.

Reaults of the TDM stated- adaptation section were used to train the neura network in the Response
Option Generator. The resulting network consists of 45 input nodes, 8 output nodes, and two hidden
layers. The input nodes may be grouped as. persona and household attributes, work schedule
characteristics, commute characterigtics, trip chaining characteristics, mode characteristics, and TDM
scenarios. The eight output nodes comprise: change departure time, use trangit to work, ride-share to
work, ride bicycle to work, walk to work, work a home, do nothing different, and other (long-term
responses treated as doing nothing in short-term policy andyss).

3 Note that travel time data used are static; possible changes in network service levels due to TDM measures
are not reflected in the smulation.



Table7
TDM Measures Included in the AMOS Survey in
the Washington, DC, Metropolitan Area

TDM #1 Parking Tax. Incremental parking tax at work place at

- $1 to $3 per day in suburbs’

- $3 to $8 per day in D.C. and central areas

TDM #2 | Improved Bicycle/Pedestrian Facilities. Well-marked and well-lighted bicycle
paths and a secure place to park a bicycle wherever respondent went.

TDM #3 | “Synergy” Combination of TDM 1 and TDM 2
TDM #4 | Parking Charge Combined with Employer-Supplied Commuter Voucher.
Employers provide employees with a commuter voucher while employees must
pay for a parking surcharge.

- $40 to $80 per month for both voucher and surcharge
TDM #5 | Congestion Pricing. Area-wide implementation of congestion pricing, effective
from 6:00 AM to 9:00 AM and from 4:00 PM to 7:00 PM.

- $0.15 to $0.60 per mile

- 10% to 30% travel time savings
TDM #6 | “Synergy” Combination of TDM 4 and TDM 5

"Different parameter values are assigned to respondents randomly within the range shown.

6.2.4 Smulation Results

Using the AMOS prototype described above, the effectiveness of the following TDM measures are
evauated:

e TDM #1, parking pricing: parking surcharge of $8.00 per day,

» TDM #4, parking pricing with employer-paid voucher: parking charge of $80 per month and a
commuter voucher of $60,

e TDM #5, congegtion pricing: congestion charge of $0.50 per mile, travel time reduction by
30%, and

» TDM #6, asynergy combination of TDM #4 and TDM #5: parking charge of $80 per month,
commuter voucher of $60, and congestion charge of $0.50 per mile.

A tota of 20 smulation runs were performed for each TDM measure.

The results of the analyss are summarized for TDM #1 and TDM #5 in Tables 8 through 10. The
reader is cautioned that the number of sample households from the MWCOG data base that were
available to the sudy was unfortunately very smal and the results presented here are subject to sampling
errors. 1t must also be noted that this exercise has been made for illugtrative purposes and the size of

1 In the future the spatial and temporal resolution of micro-simulation results can be refined by using more
households, possibly synthetic households distributed over the study area.



the sample used here, and some of the smplifying assumptions exigtent in the prototype, warrant neither
generdization of the results obtained nor generad assessment of the rdative effectiveness of the TDM
scenarios examined here,

Table8
Basdine Travel Characterigtics
Totd AM Peak PM Peak Off-Peak

TRIP PURPOSE

Work 42.2% 64.0% 31.1% 36.6%

Non-Work 57.8% 36.0% 68.9% 63.4%
TRAVEL MODE

Auto - Driver 54.0% 65.1% 54.7% 45.5%

Auto - Passenger 18.4% 10.5% 18.9% 23.6%

Other 27.6% 24.4% 26.4% 30.9%
TRIPDURATION (min.)

Totd 18.5 21.7 22.0 13.4

Auto-Driver 21.6 24.5 24.9 15.2

Auto- Passenger 17.0 16.4 214 14.2

Other 13.6 16.4 16.2 10.1
HOT STARTS (%) 37.7% 34.9% 35.9% 37.8%
PERCENT OF TRIPS 100% 27.3% 33.7% 39.0%
TRIPS PER PERSON 3.21

Basdline: Thedistribution of trip purposes (work vs. non-work), travel mode (auto-driver, auto-
passenger, other), mean trip duration by mode, percent of hot starts, and average number of trips per
person are summarized in Table 8 for AM pesk, PM peak and off-peak periods. Sightly over 60% of
the trips are work trips (including trips from work to home), with higher fractions during the morning and
afternoon peaks. Overdl| over three-quarters of the trips are made by auto. The large fraction of trips
by “other” mode in the afternoon peak period represents walk trips made in this period by this sample
of commuters.

Parking Pricing (TDM #1): Results of amulation runswith TDM #1, parking pricing with a surcharge
of $8 aday, are summarized in Table 9 The most notable change isin modd split. The fraction of auto
driver trips decreased from 54.0% in the basdline case to 47.5%, and auto passenger trips from 18.4%
to 16.4%. Thefraction of “other” modes increased by 7.8% during AM pegk, 6.3% in the PM peak
and 4.4% during off-peak periods, respectively.

The overdl average trip duration (in min.) shows only smdl changes between the two cases.

Importantly, however, the mean “other” trip duration increased from 13.6 min. to 18.4 min. This
suggests that long-distance commuters tended to remain auto commuters while shorter distance travelers
adopted other options. The distribution of trips across morning peak, afternoon pesk and off-peak



shows only minor changes. The fraction of morning pesk trips decreased dightly from 34.9% to
34.5%, while that of afternoon pesk trips increased from 35.9% to 37.4%. The average number of
trips per person increased dightly from 3.21 to 3.31. Thisreflects activity re-linking asaresult of a
commute mode change, which resulted in more trips.

Table9
AMOS Simulation Results: Parking Pricing (TDM #1)

Tota AM Peak PM Peak Off-Peak

TRIP PURPOSE

Work 43.2% 63.2% 35.5% 35.4%

Non-Work 56.8% 36.8% 64.5% 64.6%
TRAVEL MODE

Auto - Driver 47.5% 57.5% 48.6% 40.8%

Auto - Passenger 16.4% 10.3% 18.7% 23.9%

Other 36.1% 32.2% 32.7% 35.3%
TRIP DURATION (min.)

Total 19.4 21.6 22.8 13.4

Auto-Driver 21.2 23.6 24.8 15.3

Auto-Passenger 16.5 16.4 21.4 14.2

Other 18.4 19.7 20.7 10.5
HOT STARTS (%) 37.4% 34.5% 37.4% 39.2%
PERCENT OF TRIPS 100% 26.9% 33.0% 40.1%
TRIPS PER PERSON 3.31

Congestion Pricing (TDM #5): The results with congestion pricing a aleve of $0.50 per mile with
30% reduction in travel time are summarized in Table 10. The fraction of auto trips, 50.2%, is higher
with this TDM than with parking pricing (47.5%), but is lower than the basdine result (54.0%).
Notable is the result that the reduction from the basdline in driver tripsin PM peak is much smdler than
that in the morning peak. Other than mode shares, the results of this TDM are very smilar to those of
TDM #1.

The exercise here has demondrated that AMOS is cgpable of producing travel forecasts by smulating
individuals daily trave patterns. It has aso shown that the TDM measures examined in the study do
have certain impacts on travel demand. From model development viewpoints, results are very
encouraging as they indicate activity-based models can be implemented in a metropolitan region and can
produce forecasts for policy andysis.

The results may seem less encouraging from trangportation policy viewpoints, however, because the
effects of the TDM scenarios examined here are smal, and because there are only afew discernible
differences among the impacts of the respective TDM scenarios. These results may be smply dueto



the smal sample usad in the exercise. 1t is concelvable that the commuters in the sample had very
limited aternative commute options and were able to respond within very narrow ranges to whatever
TDM scenarios being implemented. Whether this observation can be generdized or not needsto be
determined in the future by the anadlyss of full data set.

Table 10
AMOS Smulation Results: Congestion Pricing (TDM #5)

Tota AM Peak PM Peak Off-Peak

TRIP PURPOSE

Work 43.0% 64.4% 35.6% 36.5%

Non-Work 57.0% 35.6% 64.4% 63.5%
TRAVEL MODE

Auto - Driver 50.2% 56.3% 51.9% 39.7%

Auto - Passenger 17.0% 10.3% 18.3% 22.2%

Other 32.8% 33.4% 29.8% 38.1%
TRIP DURATION (min.)

Total 19.0 23.0 22.6 135

Auto-Driver 21.4 23.5 24.5 16.1

Auto-Passenger 17.3 16.4 21.8 145

Other 16.2 24.2 19.9 10.2
HOT STARTS (%) 36.8% 34.5% 36.5% 34.9%
PERCENT OF TRIPS 100% 26.9% 32.2% 39.0%
TRIPS PER PERSON 3.30

Another possihility is that the Response Option Generator has not been fine-tuned enough to be able to
detect possbly minute differencesin commuters  responsesto different TDM messures. In particular,
the results suggest that a neural network be developed for each TDM measure separatdly.” The
invariance in amulation results across the TDM scenarios may aso be due to the limitations of the
prototype used for the andlysis. For example, destination choice has not been implemented in the
prototype. In addition, the smplistic evauation and acceptance rules adopted in the prototype may
have resulted in premature search termination for each commuter, possibly leading to the acceptance of
the basdline patterns with a higher probability than it should receive.

This exercise nonetheless has demonstrated that a micro-samulation modd system of daily travel
behavior, which adheres to the principles of the activity-based gpproach, is not only feasible but dso is
cgpable of providing apracticd tool for policy anayss. The implementation of the AMOS prototype in
the Washington, D.C., metropolitan area utilizes the data base maintained by the MPO of thearea. The

> In the prototype used in this study, the neural network is designed to be able to handle ll TDM scenarios
examined.



medium scale survey (about 650 respondents) used in this study can be modified to entertain awide
range of TDM measures, making AMOS a flexible and redlistic tool for transportation policy anayss.
Asnoted earlier, efforts are ongoing currently on severa fronts to expand the scope of AMOS by
incorporating: vehicle transaction and utilization behavior, vehicle alocation, synthetic generation of
households and their activity-travel patterns. Planned research activities include the development and
incorporation of modes for: search termination, activity engagement, time alocation, inter- person
interaction, and multi-day behavior.

7. CONCLUSION

This paper has offered an overview of the roles and advantages of the activity-based approach in travel
demand forecagting, and discussed requirements for demand forecasting modelsin current
trangportation planning contexts. Application examples are presented with two classes of activity-based
modd systems. more macrascopic structural equations mode systems, and micro-smulation modd
systems. These modd systems arein their early stages of development and the examples presented are
limited in their scopes. The results presented in this paper have, nevertheless, demonstrated that
activity-based moded systems are practica tools for policy anadysis that overcome the weaknesses of
conventiona models. The results offer strong support for the development and implementation of full-
scale modd systems.
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